Spatio-temporal modeling of particulate matter concentration through the SPDE approach
نویسندگان
چکیده
منابع مشابه
Spatio-temporal modeling of particulate matter concentration through the SPDE approach
In this work we consider a hierarchical spatio-temporal model for particulate matter (PM) concentration in the North-Italian region Piemonte. The model involves a Gaussian Field (GF), affected by a measurement error, and a state process characterized by a first order autoregressive dynamic model and spatially correlated innovations. This kind of model is well discussed and widely used in the ai...
متن کاملPractical Large - Scale Spatio - Temporal Modeling of Particulate Matter Concentrations
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during ...
متن کاملSpatio-temporal Visualization of Interpolated Particulate Matter (PM2.5) in Beijing
People in growing urban areas are more and more influenced by emissions coming from numerous vehicles and factories. In this paper we inspect the concentration of particulate matter (PM2.5) visually over time. This information stems from a data set of air quality measurements from 36 static sensors in Beijing over one year (from 8.02.2013 till 8.02.2014). One possibility for creating an overvie...
متن کاملModeling of spatio-temporal of albedo over Iran
The aim of this study is modeling spatiotemporal variations of albedo. This study was conducted using simultaneous effects of several components, such as wetness of surface layer of soil, cloudiness, topography and vegetation density (NDVI), using MEERA2 model with a resolution of 50 in 50 km during 2000-2010 in Iran. The results of spatial analysis of albedo values in Iran showed that the high...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AStA Advances in Statistical Analysis
سال: 2012
ISSN: 1863-8171,1863-818X
DOI: 10.1007/s10182-012-0196-3